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Abstract. Maritime assets such as merchant and navy ships, ports, and harbors, 

are targets of terrorist attacks as evidenced by the USS Cole bombing. 

Conventional methods of securing maritime assets to prevent attacks are 

manually intensive and error prone. To address this shortcoming, we are 

developing a decision support system that shall alert security personnel to 

potential attacks by automatically processing maritime surveillance video. An 

initial task that we must address is to accurately classify maritime objects from 

video data, which is our focus in this paper. Object classification from video 

images can be problematic due to noisy outputs from image processing. We 

approach this problem with a novel technique that exploits maritime domain 

characteristics and formulates it as a graph of spatially related objects. We then 

apply a case-based collective classification algorithm on the graph to classify 

objects. We evaluate our approach on river traffic video data that we have 

processed. We found that our approach significantly increases classification 

accuracy in comparison with a conventional (i.e., non-relational) alternative. 

1 Introduction 

Maritime assets such as merchant and naval vessels are under a constant threat of 

terrorist attacks. For example, the USS Cole was completely disabled in a bombing 

event at the Port of Yemen that claimed the lives of 11 sailors.
1
 Existing approaches 

to counter such threats use a combination of sensors such as radar, video surveillance, 

and manual watchstanding. These approaches are manually intensive; potential 

threats can be overlooked due to human factors such as information overload and 

fatigue. In addition, sensors such as radar are largely ineffective against small, fast 

moving vessels. We are developing a decision support system, named the Maritime 

Activity Analysis Workbench (MAAW), to address some of these problems. MAAW 

is being designed to detect potentially threatening surface vessels by automatically 

processing maritime surveillance video. A critical task in this context is that of 

classifying maritime objects. If accurately predicted, MAAW can then assess their 

potential threat and issue alerts to watchstanders, our primary end users.  

Our object classifier must operate on potentially noisy data obtained from image 

processing components yet perform robustly. When combined with a large number of 

closely related vessel types, this poses a significant challenge for conventional 
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classification methods, which classify objects independently. However, in the 

maritime domain, we expect the context of maritime objects to provide important 

clues for object classification. For example, a tugboat in a harbor often tows a cargo 

vessel. Given that images of small vessels are harder to accurately classify than those 

of large cargo vessels, their proximity could be an important clue for classifying 

tugboats. One approach for incorporating contextual clues is collective classification. 

Unlike conventional approaches, collective classifiers concurrently classify a set of 

related objects. This approach has not previously been applied to the task of maritime 

object classification, and its effectiveness on this task is unknown.   

Our focus in this paper is an object classification method that exploits contextual 

cues in a maritime video scene. Our contributions are as follows. First, we frame our 

task as that of using contextual relational cues to increase object classification 

accuracy. We represent these cues by transforming a maritime scene into a graph of 

spatially related objects. We then apply a case-based collective classifier, which 

includes a conventional classifier, domain-specific parameterized similarity measures 

(learned from the data), and a collective inference procedure. Finally, we evaluate our 

approach on maritime river traffic video captured by our system. We found that case-

based collective classification significantly outperforms a conventional independent 

object classification approach on this task. 

We briefly describe the topic of maritime surveillance and related work in Section 

2. In Section 3, we present an overview of our system. In Section 4, we describe its 

algorithm for case-based collective classification of maritime objects. We discuss the 

evaluation of our approach in Section 5. Finally, we conclude the paper with remarks 

on future research.  

2 Maritime Video Surveillance and Related Work 

Other researchers have addressed maritime domain awareness tasks not unlike the 

port/harbor security task that is our ultimate focus. For example, Rhodes et al. (2005) 

employ neural network classifiers (specifically, a modification of Fuzzy ARTMAP) 

to learn normalcy models for anomaly detection in maritime environments. As with 

MAAW, their objective is for operators to provide feedback for learning. We are 

addressing the task of using spatial and temporal relations to detect coordinated 

activities. However, their data combines metadata with automated identification 

systems (AIS) data, rather than video imagery. 

ObjectVideo
2
 deploys sophisticated products for maritime (and other types of) 

intelligence surveillance, including those for real-time, high-speed, activity-based 

video indexing and retrieval. This can be used, for example, to perform forensic 

analysis (e.g., detect the movement of suspicious objects). Motivated by the fact that 

humans cannot monitor a vast number of vessels/objects simultaneously, their system 

automatically extracts object descriptions (from a variety of sensors) using a 

statistical pixel modeling approach, and employs user-provided rules to determine 

when to generate security alerts (Lipton et al., 2009). A key difference of our 

approach is that we instead use a case-based statistical relational learning approach 

for object recognition. 
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 http://www.objectvideo.com 



 

 

 

 

 

 

There is a long and rich history of research in case-based reasoning (CBR) on 

image processing (Perner et al., 2005). Most of these have focused on images rather 

than video. For example, Perner’s (1993) cases are graphically represented using 

spatial relations, and structural similarity is computed to classify weld defects. In 

contrast, our cases are related spatially and are not represented using only intrinsic 

attributes. Also, we instead use collective inference for object classification. 

Work on video data within CBR has primarily concerned methods for video 

retrieval. For example, Burke and Kass (1995) describe an approach for retrieving and 

presenting stories from a video data base to support educational goals. Similarly, 

Johnson et al. (2000) describe an ASK system (the Air Campaign Planning Advisor) 

in which educational video recordings of domain experts can be retrieved through a 

tailored interface and a hierarchical task decomposition model. Zhang and 

Nunamaker (2004) index videos by their metadata. Their system retrieves cases using 

natural language queries. While this genre of research focuses on user interfaces and 

video retrieval, our focus in this paper is instead on object recognition in video data. 

Some other uses of video have been the focus of CBR and related research. For 

example, MacNeil (1991) describes a visual programming environment in which 

CBR is used to capture and reuse knowledge pertaining to the creation of multimedia 

presentations. In MacNeil’s TYRO, cases are generic temporal templates, abstracted 

from video segments, which denote chunks of design experience. These general cases 

can then be used to provide constraints for creating similar videos. In contrast, we 

focus on specific case representations, and recognizing objects from video.  

Our ultimate focus is on threat analysis: if we can accurately identify the objects in 

these videos and recognize their behaviors, our next step will be to assess whether 

these behaviors are threatening (i.e., to naval/maritime assets). A variety of CBR 

research has focused on threat analysis techniques. For example, Jung et al. (1999) 

use CBR to perform risk analysis for organizations in electronic commerce 

environments, where cases are used to evaluate assets and assess threats and 

vulnerabilities by comparison with prior security accidents. Multiple groups have also 

used CBR to assist intelligence analysts with constructing (Adams & Goel, 2007) 

and/or analyzing (Murdock et al., 2003) hypothesized terrorist threats. CBR has also 

been used, several times, to detect anomalies in computer networks (e.g., see a recent 

investigation described by Micarelli and Sansonetti (2007)). A primary distinction of 

our work from these investigations is that we are working with video data.  

Finally, a distinguishing feature of our approach is that we use collective 

classification to leverage the spatial and temporal relations among objects to increase 

predictive accuracy. Previous work on collective classification, a form of statistical 

relational learning (SRL), has not been applied to tasks involving video data (Sen et 

al., 2008). This includes our own previous research on case-based collective 

classification (McDowell et al., 2007a). However, other SRL approaches have been 

applied to similar tasks. In particular, Aboutalib and Veloso (2007) leverage human-

provided cues, detected from humans interacting with objects in video data, to 

recognize those objects using probabilistic relational models. Unlike our work, they 

do not use a CBR approach for this task, nor focus on maritime object recognition.  



 

 

 

 

 

 

3 The Maritime Activity Analysis Workbench 

Our goal is to develop a decision support system for maritime security personnel (e.g., 

watchstanders, harbor masters) to assist them with their surveillance and decision 

making tasks and improve their threat assessment capability. To meet this goal, we 

are developing MAAW. It includes a series of adaptive processors, ranging from 

video acquisition to threat analysis, designed to interact with its user to issue alerts, 

provide threat assessments, and receive performance feedback with corrections (see 

Figure 1).  A crucial component in its pipeline of processors is the Object Classifier, 

which we discuss in detail in Section 4. Here, we briefly review MAAW’s intended 

functionality and explain the role of its Object Classifier. 

 
Figure 1: MAAW’s Functional Architecture 

MAAW’s Video Acquisition subsystem currently includes a fixed video camera 

that captures maritime traffic video in black and white, digital format. It can also 

capture videos from online harbor cams. The acquisition system suitably compresses 

the video and hands it off to the Video Processor for further processing. The Detector 

within the Video Processor performs basic operations such as adaptive background 

subtraction to detect moving maritime objects such as boats and ships. The Tracker, 

also a component of the Video Processor, then groups the objects detected from a 

series of video frames into tracks. It uses a combination of Appearance Models (not 

shown in Figure 1) and clustering techniques to perform its task.  

The Video Processor outputs track information in a data structure suitable for 

consumption by the Behavior Interpreter. The track is represented as a series of 

events, each referring to a maritime object and its attributes such as position, speed, 

and image signature. The Behavior Interpreter’s function is to classify the objects 

within a track and the activities they are performing. We are combining supervised 

learning approaches along with maritime surveillance domain knowledge to 

accomplish these tasks. The Object Classifier and the Activity Labeler are the two 
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components in the Behavior Interpreter. They rely on two knowledge bases: a 

Maritime Ontology, and a database of Annotated Tracks.  We are annotating all the 

track data with objects categories and activity descriptions chosen from this ontology, 

and expect users and subject matter experts to do so minimally while using MAAW.  

The maritime object classification task can be challenging because tracks extracted 

by the Video Processor can be noisy depending on a variety of application conditions 

such as the weather, time of day, the size and the number of objects, and occlusion. 

For example, a single object in the scene could result in multiple spurious tracks with 

inaccurate attribute value estimates. In this paper, we explore one way to address this 

problem. We investigate whether taking application and scene context into account 

can increase classification accuracy, even when the track data is noisy.  

The Behavior Interpreter hands off the automatically labeled tracks to the Threat 

Analyzer, which will fuse the labeled tracks with harbor database information to 

assess threats and issue alerts. End users will be able to accept or reject MAAW’s 

decisions and provide corrective feedback, which MAAW will use to update the track 

database. 

MAAW is, in part, an annotation tool for video processing. Rincón and Martínez-

Cantos (2007) survey other such tools, which differ from MAAW in that they do not 

employ case-based collective classification to perform maritime object classification. 

4 Case-Based Collective Classification of Maritime Objects 

4.1 Collective Classification 

Conventional classification methods assume that cases/instances are independently 

drawn from an identical distribution (the i.i.d. assumption), and are otherwise not 

related. However, in many practical classification tasks cases can be explicitly or 

implicitly related. For example, web pages can be explicitly related by hyperlinks and 

emails can be implicitly related as requests and responses. Likewise, in a maritime 

object classification task, cases that represent objects can be implicitly related 

spatially and/or temporally.  For example, a tugboat track can be spatially related to a 

cargo-ship track that it is towing out of a harbor.  

Relations across cases can provide valuable contextual information that can 

potentially be leveraged to increase classification accuracy. For example, collective 

classifiers use these relations to concurrently classify cases, which can often increase 

classification accuracy (Sen et al., 2008). The magnitude of accuracy increase 

depends on a number of factors that characterize the related cases. In particular, 

accuracy is an increasing function of their autocorrelation (i.e., the correlation among 

attributes, and in particular the class labels, of related cases), a decreasing function of 

relation density, and a decreasing function of attribute predictiveness (i.e., their 

correlation with class label) (Jensen & Neville, 2002; Sen et al., 2008). As explained 

below, the task of object classification on cases extracted from maritime video 

exhibits some of these characteristics. Therefore, it is a suitable candidate for 

collective classification.    

Two broad categories of collective classification algorithms have been studied, as 

distinguished by how they perform inference: 



 

 

 

 

 

 

1. Local collective inference: These algorithms operate on a vector space 

representation of attributes obtained by transforming a graph of related cases. 

The Iterative Classification Algorithm (ICA) (Neville & Jensen, 2000), Gradual 

Commit (McDowell et al., 2007b), and Gibbs sampling (Geman & Geman, 

1984) are some example techniques.  

2. Global collective inference: These algorithms operate directly on a graph of 

related cases rather than attribute vectors. Examples in this category include 

loopy belief propagation (Pearl, 1988) and relaxation labeling (Rosenfeld et al., 

1976). 

In this paper, we apply ICA to our task. We selected it due to its simplicity, 

efficiency, and comparatively good performance (Sen et al., 2008).   

Local collective classification algorithms operate on a representation of cases that 

includes both intrinsic and relational attributes, where the former describe properties 

of an individual case and the latter denote relations among cases. In this context, 

collective classification is a two-stage supervised learning process:  

1. Bootstrap classification: Effective relational representations for a case typically 

include attributes defined as relations on the values of the class labels of related 

cases. For example, in the maritime domain, a relational attribute may include the 

distance of one track to another and the category label of the related object. 

However, the dependency of relational attribute values on class labels of related 

cases poses a problem: at the start of the classification, the class labels of the 

related cases are sometimes unknown, which implies that their relational attribute 

values cannot be computed. To jump start this process, an initial prediction for the 

class labels must be obtained. This is accomplished by applying a classifier to only 

the intrinsic attributes. Any conventional supervised learner (e.g., Naïve Bayes, 

SVMs, a case-based classifier) can be used for bootstrap classification. In this 

paper we use a simple case-based classifier. 

2. Collective inference: This inherently parallel process is simulated by iterating over 

a loop of two steps: 

a. Predict relational attribute values:  Based on the class labels obtained in the 

previous step, these values are computed to complete the case representation.  

b. Perform local classification: The classifier learned during the bootstrap step 

is used to classify cases with their predicted relational attribute values.  

Typically, the accuracy of relational attribute value predictions and local 

classifications increase over subsequent iterations. For the ICA algorithm, 

iterations of collective inference cease when there are no changes to classification 

predictions in successive iterations, or after a predetermined max number of 

iterations. Empirical evaluations of ICA show that it typically converges in a 

relatively small number of iterations (e.g., 10) (McDowell et al., 2007a). 

In summary, the supervised classifier learned during the bootstrap step has access 

to only the (non-relational) intrinsic attributes, whereas it also has access to the 

relational attributes during collective inference.  

In this paper, we assume no links between the training and test sets; this is known 

as the out-of-sample task (Neville & Jensen, 2005). Thus, the classifier is trained on a 

set of completely defined cases in step 2.b because the labels of related cases, from 

which the relational attribute values are derived, are all available (i.e., either given or 



 

 

 

 

 

 

predicted). We also assume that the relations to be used are pre-selected rather than 

learned. We address the implications of these and other assumptions in our evaluation 

in Section 5 and in the subsequent discussion in Section 6. 

 

 

ICA (Tr,Te,NR,R,n,S)= 

//Tr = Training data, Te = Test data, NR = non-relational features, 

//R = rel.features, n = #iterations, S = supervised learner 

1 Tr.R.values ←setRelFeatures(Tr,R) //Relational value estimation 

2 M←learnModel(Tr,NR,R,S) //Learn initial relation model 

3 Te.Labels ←classify(Te,Tr,M,NR,∅) //Bootstrap classification 

4 for j=0 to n //Collective inference 

5    Te.R.values ←setRelFeatures(Te,R)   //Relational value estimation 

6    Te.Labels ←classify(Te,Tr,M,NR,R)   //Local classification 

7 Return Te.Labels //Return final labels 

Figure 2: Pseudocode for the Iterative Collective Algorithm (ICA) 

4.2 Case-Based Collective Inference 

In Section 4.1, we described a simple collective classifier called the Iterative 

Classification Algorithm. Figure 2 presents ICA’s pseudocode where, in this study, 

we use a case-based algorithm (for S) to perform supervised learning and prediction.  

Case-based classification predominantly involves retrieving similar cases and 

reusing their class labels to predict the label for a new classification problem (López 

de Mántaras et al., 2005). Below we describe our case representation for maritime 

object classification, followed by the retrieval and reuse methods we use. Case 

retention can be important in an application like ours, but we leave it for future work.  

Case representation: The object classifier receives a structured representation of 

tracks as its input. A track comprises multiple events, each resulting from a change in 

an object’s direction or speed. Ideally, a track represents a single moving maritime 

object. However, MAAW’s Video Processor can make mistakes while grouping 

multiple events from a scene into multiple tracks. Our goal is to use the Object 

Classifier to reduce errors in categorizing images and use vessel category labels 

provided by the Object Classifier to correctly rebuild the tracks.  That is, we classify 

objects for each event in a track instead of the track as a whole. Moreover, in our 

application, the track must be repeatedly classified as soon as it is detected and its 

classification revisited as the track unfolds. Therefore, we represent each event in a 

track as a case within MAAW.  

We use a typical <problem, label> representation for our cases. Problems are 

represented by intrinsic and relational attributes. Intrinsic attributes of a case are those 

attributes of a maritime object that are independent of other objects. For our task, 

these include the following three groups of 19 attributes (see Figure 3): 

1. Object position: This represents the position of a maritime object in a two-

dimensional coordinate system detected and extracted by the Video Processor 

from the maritime video. It is a tuple <p
x
, p

y
> comprising two continuous real 

values.    



 

 

 

 

 

 

2. Object velocity: This represents the velocity vector (i.e., speed and direction) of a 

maritime object.  Like object position, the velocity vector is represented in two 

dimensions using a tuple <v
x
, v

y
> comprising two continuous real values. 

 

Figure 3: Attributes representing problems in cases denoting related maritime objects 

3. Object image moments: Our Video Processor extracts images of objects from a 

scene including its shape, which it converts into a characteristic shape signature. 

Shape signatures or moments are a commonly used technique for analysis and 

comparison of 2D shapes. They capture information such as orientation, size, and 

shape boundary (Leu, 1991). We generate fourth order moments, which is a tuple 

comprising 15 real continuous values <m
0
…m

14
>. 

In addition to these attributes, we employ the following group of relational attributes: 

4. Closest track object: These three attributes encode the spatial relationship of a 

reference object (i.e., the object that the case represents) in a maritime scene to a 

related maritime object that is the closest to it. The distance between a reference 

object and a related object is computed based on their positions in the two-

dimensional real world coordinates. The attributes comprise a tuple of three 

values <roc, rod, rob>: 

a. Related object category (roc): This is a categorical label of the related 

object selected from our Maritime Ontology. 

b. Related object distance (rod): This is the distance of the related object from 

the reference object represented by a continuous real value greater than or 

equal to 0. (We define our distance function below.) 

c. Related object bearing (rob): This is the angle between the velocity vector 

of the reference object and the position vector of a related object.  

Other (e.g., temporal) relationships among objects exist that we could use for 

maritime object classification, but we leave their consideration for future study.  

Case retrieval: A new problem in MAAW refers to an unlabeled object in a maritime 

scene. We retrieve the k most similar stored cases by comparing each of them with the 

v

vy

rob

< px, py >
< vx, vy >
<m0.. m14 >
<roc, rod, rob>
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new problem to assess their overall similarity. We compute the overall similarity by a 

weighted aggregation of attribute similarities, where the definitions for each of the 

four groups of attributes are defined as shown below. 

i. Positional similarity:  We compute the positional similarity PosSim(oi, oj) of two 

objects oi and oj as follows: 

jiMaxDistoodistooPosSim jiji ≠−= ,),(1),(   (1) 

22
)()(),(

y

j

y

i

x

j

x

iji ppppoodist −+−=  

22 ))min()(max())min()(max( yyxx ppppMaxDist −+−=  

 where dist() is the Euclidean distance between two maritime objects computed 

using the attributes representing their respective positions (i.e., the tuple (p
x
,p

y
)). 

MaxDist is a similarity metric parameter representing the maximum possible 

distance for a pair of objects, computed from their position values over the entire 

case base.   

ii. Velocity similarity: We compute the similarity SpeedSim(oi, oj) of the speed of 

two maritime objects oi and oj as follows (we ignore directional differences for 

this task):  

 jioodiffooSpeedSim sjiji ≠−= ,),(1),( σ    (2) 

22
)()(),(

y

j

y

i

x

j

x

iji vvvvoodiff −+−=  

where σs is a similarity metric parameter representing the standard deviation (i.e., 

variance) of object speeds over the entire case base.   

iii. Moment similarity: We compute the similarity MomSim(oi, oj) of the image 

moments of two maritime objects oi and oj as follows:  

140,15),(),( ≤≤= ∑ koomvSimooMomSim ji

k

ji
   (3) 

)/)(,1min(1),( k

m

k

j

k

iji

k mvmvoomvSim σ−−=
                         

(3.1) 

Equation 3 averages the similarities across 15 moment value similarities, where 

each moment value similarity mvSim
k
(oi,oj) is calculated using Equation 3.1, 

which computes the minimum of the proportional difference of the k
th

 moment 

values mv
k
. This metric uses 15 parameters, σm

k
, each representing the variance 

of the k
th

 moment value across the entire case base.
  
 

iv. Closest object similarity: This metric assesses the similarity of pairs of spatially 

related objects. The attribute closest track object captures the spatial relation 

between a reference object and its closest related object. This metric, ClobSim(oi, 

oj), compares this relation in two parts (see Equation 4). First, it checks to see if 

the categories of related objects (i.e., roc) are the same. Then it compares the 

distance (i.e., rod) using rdistSim() and the bearing (i.e., rob) rbearingSim(). 

Equation 4 averages the distance and bearing similarities.  

The distance similarity is computed using Equation 4.1, which uses a metric 

parameter, σrod, which represents the variation of rod across the entire case base. 

The bearing similarity is computed in four parts based on the four quadrants of a 

circle centered on the reference object (π/2, π, 3π/2, 2π) that roughly represent the 

forward, rightward, backward, and leftward topological spaces of an object. 



 

 

 

 

 

 

These are forward similarity (fsim), backward similarity (bsim), rightward 

similarity (rsim) and leftward similarity (lsim), respectively:  

))()""(,0),( jijiji rocrocNONErocrocifooClobSim ≠∨=∨=                (4) 

otherwiseoomrbearingSioordistSim jiji ,2/)),(),(( +=     (4.1) 

)),min(),,min(min(),(

/1),(

lsimrsimbsimfsimoomrbearingSi

rodrodoordistSim

ji

rodjiji

=

−−= σ
         

       for  θ = robi - robj 

            fsim(θ) = 2*|π/2 - θ|/ π       when 0 < θ < π/2 

            = 1- 2*|2π - θ|/ π    when 3π/2 < θ < 2π 

            = 0              otherwise 

            bsim(θ) = 1- 2*|π/2 - θ|/ π   when π < θ < 3π/2 

            = 1              when θ = π 

            = 0                         otherwise 

                      rsim(θ) = 1- 2*|3π/2 - θ|/ π   when π < θ < 2π 

           = 1                 when θ = 3π/2 

           = 0                     otherwise 

                     lsim(θ) = 1- 2*|π/2 - θ|/ π    when 0 < θ < π/2 

           = 1                when θ = π/2 

           = 0                        otherwise 

The function we use to compute aggregate similarity Osim(oi,oj) for the learned 

classifier is as follows: 

Osim(oi,oj) = (PosSim(oi,oj)+ SpeedSim(oi,oj)+ MomSim(oi oj))/3   (5) 

Osim(oi,oj) = (PosSim(oi,oj)+ SpeedSim(oi,oj)+ MomSim(oi,oj)+ ClobSim(oi,oj))/4  (6) 

where Equation 5 refers to the computation before relational values have been 

computed (i.e., during the bootstrap phase) and Equation 6 refers to the situation after 

the relational values have been computed (i.e., during collective inference). For the 

sake of simplicity, we ignore differential weighting of features in this paper, leaving 

this for future study. 

Case reuse: We use the similarity-weighted voting kernel function for reusing the 

labels from the k most closely matching cases. This kernel collates the votes for the 

candidate category labels from each of the k cases, where each offers its Osim() value 

as a vote toward its object label. The kernel then computes the total vote for each 

candidate label by summing over all the votes it receives, and selects the label with 

the largest vote as the label for the new problem.   

Supervised learning: Learning a case-based classifier can include learning/tuning its 

similarity metric from a memory of stored cases. This can involve, for example, 

feature weight learning and computing the values of metric parameters. In this paper, 

we perform only this latter task. We computed the settings of the parameters for each 

of the four parameters described above (i.e., MaxDist for positional similarity, σs for 

velocity similarity, 
k

mσ  for moment similarity, and 
rodσ for closest object similarity). 

This entails estimating their value over the entire case base. For example, 
rodσ is the 

standard deviation, a statistic computed over the real-valued attribute rod.    



 

 

 

5 Evaluation 

5.1 Objective 

Our objective was to evaluate whether using a collective classification approach for 

our maritime object classification task attains a sig

does a conventional supervised learning algorithm. In other words, we formulate the 

following null hypothesis:

H
0
 There is no difference between the maritime object classification accuracy 

obtained by a collective classifier

but otherwise equivalent supervised learning algorithm. 

5.2 Method 

Data: We selected two days of video of maritime activities 

Washington, DC. We used 

moving maritime objects and their attributes (e.g., position and velocities at different 

points in time). Using MAAW, we then labeled all the events in a track with 

appropriate object categories (see Figure 4). These obje

from a Maritime Ontology (a taxonomy of

we developed using MAAW. Typically, leaf nodes of the ontology w

subject matter experts were also allowed to select interme

could not be visually categori

Our database included 

in 23 object categories 

46.64% to 0.13%. The top three most populous labels were 

touring-vessel (9.76%), 

paddle-touring-vessel) were relatively rare and occurred less than 2% of the time in 

our data set.  

Figure 4: MAAW can be used to label the extracted maritime tracks

 

Our objective was to evaluate whether using a collective classification approach for 

our maritime object classification task attains a significantly higher accuracy than 

a conventional supervised learning algorithm. In other words, we formulate the 

following null hypothesis: 

There is no difference between the maritime object classification accuracy 

obtained by a collective classifier and the accuracy obtained by a conventional 

but otherwise equivalent supervised learning algorithm.  

We selected two days of video of maritime activities on the Potomac River in 

Washington, DC. We used the Video Processor on this video to detect tracks of 

moving maritime objects and their attributes (e.g., position and velocities at different 

points in time). Using MAAW, we then labeled all the events in a track with 

appropriate object categories (see Figure 4). These object category labels were chosen 

Maritime Ontology (a taxonomy of objects, partially visible in Figure 4) 

AAW. Typically, leaf nodes of the ontology were selected, but 

subject matter experts were also allowed to select intermediate nodes when the object 

could not be visually categorized at the most specific level. 

Our database included 1578 cases of labeled objects. The database included cases 

 from our Maritime Ontology, with proportions ranging from 

The top three most populous labels were wave (46.64%), small

, and wake (7.41%). Half the object categories (e.g., steam

were relatively rare and occurred less than 2% of the time in 
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Our objective was to evaluate whether using a collective classification approach for 

nificantly higher accuracy than 

a conventional supervised learning algorithm. In other words, we formulate the 

There is no difference between the maritime object classification accuracy 

and the accuracy obtained by a conventional 
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Algorithms: We implemented two algorithms to conduct a comparative empirical 

evaluation. They were implemented using the Knexus Classification Workbench 

(KCLAW), a proprietary Java library for classification tasks: 

1. ICA0: This is a conventional case-based classifier (kNN) that does not perform 

collective classification. It differs from ICA in that it performs no collective 

inference, and does not employ relational attributes. 

2. ICA: We summarized this simple collective classifier in Section 4.1 and detailed 

its application to our maritime object classification task in Section 4.2. 

Performance Measure: We used classification accuracy as the performance measure 

with some modification. Given the nature of our domain, we considered graded 

misclassification costs based on the Maritime Ontology of object labels. In particular, 

we permit misclassification costs to be less than 1, depending on the taxonomic 

relationship between the correct and predicted labels. To do this, we used the 

Maritime Ontology to compute a misclassification cost matrix. For example, if a 

small-motorboat was classified as a medium-sized-motorboat the classification error 

was 0.5 rather than 1.0 because they are siblings in this taxonomy.  

Test Procedure: We adopted a leave-one-out cross validation (LOOCV) test 

procedure with some modifications. Conventional LOOCV procedures use one case 

from the database for testing and the remainder for training, cycling through the entire 

case base and averaging the results of individual tests. We cannot use this here 

because collective inference operates on a graph of related cases, and we choose to 

eliminate any relations between the training and test cases. Therefore, we grouped 

cases that refer to co-occurring tracks and events within the same track; each such 

grouping yields a single fold (i.e., each fold’s cases have no relations with cases in 

other folds). Next, we treated each fold as a test set and the union of cases from the 

remaining folds as the corresponding training set (i.e., the case base). This yields 177 

folds, of which 77 contain cases with relational attribute values. The average number 

of cases per fold across the entire data set is 8.92. The average number of cases in 

relational folds was marginally greater (10.79). ICA0 and ICA were applied to each 

test set (i.e., fold) and their classification accuracy was recorded.  

Analysis: We used a paired student’s 1-tailed t-test to evaluate the null hypothesis H
0
. 

5.3 Results and Analysis 

We compared the performance of ICA0 and ICA under two dataset conditions: 

1. Relational Only: To obtain insight on their true performance differences, we 

compared the algorithms using only those 77 folds that contain relations.  

2. Overall: To assess the overall impact of collective inference (at least, as embodied 

in ICA) for our application, we compared the two algorithms using all 177 folds to 

obtain an aggregate performance measure.  

Table 1 summarizes the results. The average classification accuracies of ICA0 and 

ICA for the Relational Only condition are 46.90% and 51.85% respectively 

(p=0.0001). Thus, we reject our null hypothesis H
0

 and confirm that ICA, a case-

based collective classifier, attains significantly higher accuracy than does an 

otherwise equivalent conventional (i.e., non-relational, non-collective) case-based 



 

 

 

 

 

 

classifier for our maritime object classification task. For the Overall condition, ICA 

still significantly outperforms ICA0 (i.e., 53.23% and 56.06% respectively 

(p=0.0019)) although, as expected, their performance difference is smaller (4.95 vs. 

2.83). There are a large number of classes in our domain and many of them occur 

rarely. Thus, ICA0’s classification accuracy for the Relational Only condition is 

substantially lower than it is for the Overall condition.  

Table 1: Average Classification Accuracies for the Collective and Non-Collective 

Classifiers on the Maritime Object Classification Task 

Comparison Scope ICA0 ICA Significance 
Relational Only 46.90 51.85 0.0001 

Overall 53.23 56.06 0.0019 

6 Discussion 

Our algorithm benefited greatly from experimenting with alternative similarity 

functions. For example, while not reported here, we found no benefit for the 

collective classifier until we used a similarity metric that transformed the bearing into 

topological quadrants.  Although we compared the performance of our algorithms 

using a graded (non-binary) classification error measure, our conclusions remain valid 

when we use a binary classification measure.  

Performance could be further improved by using higher quality data and refining 

the collective classification algorithm. First, the data we are using is noisy; there are 

large variations in position detection (e.g., the position at which an object is detected 

can be inaccurate due to low-resolution imagery). Also, the shape geometry uses 

coarse techniques. We are currently addressing these issues. Also, we plan to improve 

tracking by providing feedback from the Behavior Interpreter to the Video Processor 

(see Figure 1) so as to facilitate the learning of more accurate appearance models. 

Second, ICA’s behavior could be improved. While we are using the closest track 

object relation, we have not yet examined alternative relations that may be more 

appropriate for this domain. Thus, we will study methods that can automatically 

identify relations, and potentially increase classification accuracy. Also, our similarity 

metric is primitive; performance may be improved by assigning and learning the 

values of attribute weights. Likewise, our collective inferencing algorithm is non-

optimal. By eagerly using all the predicted labels in each iteration, if many are wrong, 

then classification accuracy could suffer. Accuracy may increase if we use a cautious 

variant of ICA (McDowell et al., 2007b), which would not use low-confidence 

classification predictions when computing relational attribute values. Finally, 

collective classification accuracy can be increased by methods that can increase the 

data’s autocorrelation (Aha, 2008), and we plan to test methods with this ability. 

This paper describes our initial step towards developing a capability that can assist 

watchstanders with force protection monitoring tasks. We plan to evaluate our 

algorithm’s utility on additional video of ports, harbors, and other high-traffic 

maritime areas. In addition, we would like to use additional sensors (e.g., 3-D 

cameras, infrared, long-range), and, ideally, arrange them on-board to provide 360%, 

real-time surveillance coverage for use in a variety of conditions (e.g., night, fog, 

precipitation) in many maritime environments.  



 

 

 

 

 

 

7 Conclusion 

Maritime surveillance for counter terrorism and force protection is manually intensive 

and error prone due to information overload, fatigue, and imperfect sensors. Although 

there is a significant opportunity for automated threat analysis from surveillance 

video, this problem is challenging. For example, image processing techniques may 

erroneously identify objects, and the low-level sensor data can be noisy.  

In this paper, we focused on object recognition, an initial part of the problem of 

performing automated threat analysis from surveillance video. We took a unique 

approach to the problem by transforming a maritime scene into a graph of spatially 

related objects, instead of considering each object independently. This enabled us to 

represent and exploit the information contained in the contextual cues (i.e., the 

relations among objects) by applying collective classification algorithms. For one 

such algorithm, the Iterative Collective Algorithm (ICA), we found that it can 

significantly increase classification accuracy when using a case-based classifier. 

We developed a novel representation for maritime object classification, applied a 

case-based collective classifier, and empirically demonstrated its utility. We used a 

domain-specific function for computing the similarity of topological relations. 

There are many issues that we plan to address in our future work to improve on the 

methods presented here. For example, we will explore the use of cautious approaches 

for collective classification (McDowell et al., 2007b) and other more sophisticated 

collective inference algorithms (Sen et al., 2008; Aha, 2008). We will also enhance 

our relational representation to include temporal relations, and assess methods for 

automatically transforming and selecting relations for our case representation. Finally, 

we will investigate the use of similarity metric learning techniques. 
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